

Code & Video

COARSE3D: Class-Prototypes for Contrastive Learning in Weakly-Supervised 3D Point Cloud Segmentation 1 ría Rong Li¹, Anh-Quan Cao², Raoul de Charette²

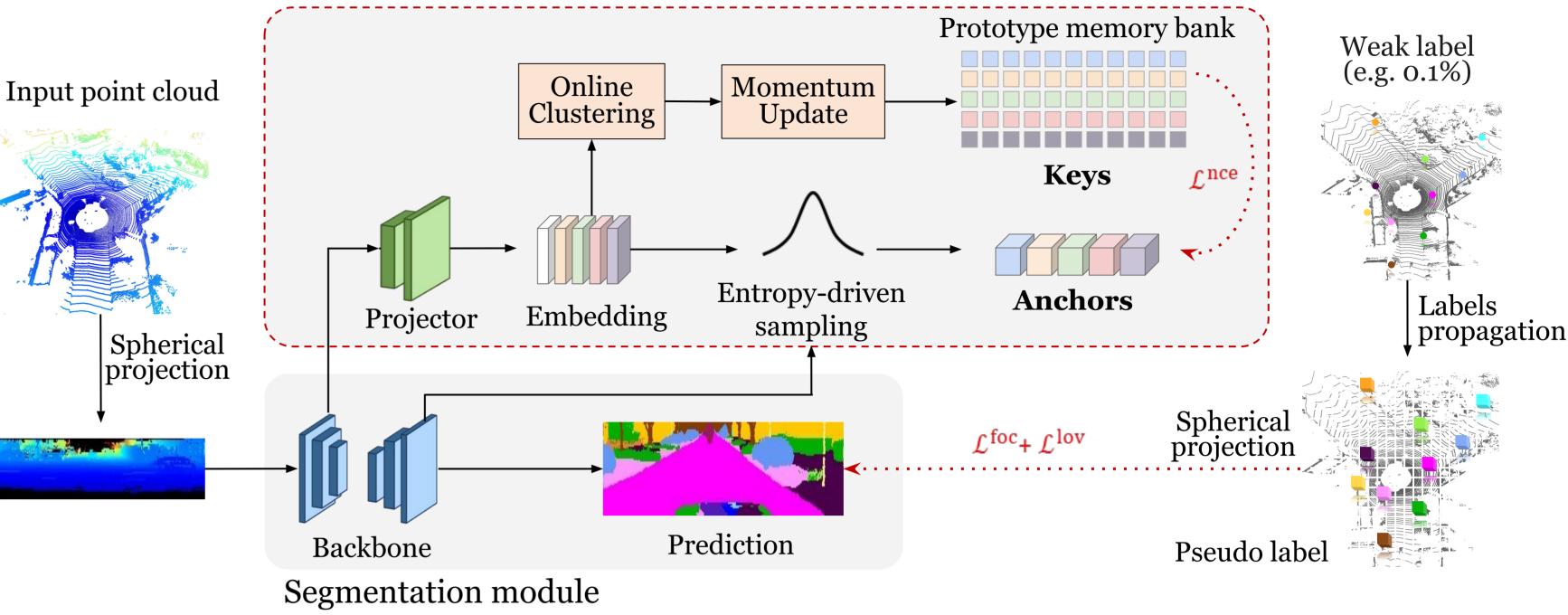
Image: Motivation

Most semantic segmentation rely on **costly** point-wise human annotation. Instead, we explore a weakly supervised learning strategy, training with as few as **0.001% of the labels**.

Contributions

• An architecture-agnostic framework for weakly-supervised 3D semantic segmentation.

Overview



Constrative learning training

- A prototype memory bank that captures per-class dataset information with an entropy-driven sampling technique to sample more confident pixels as anchors.
- Results on **3 baseline architectures** and **3 datasets** demonstrate the effectiveness.
- **Contrastive learning pipeline:** architecture-agnostic plug-in in training.
- **Prototype memory bank:** cluster pixel-wise features into compact prototypes as keys at each iteration.
- Entropy-driven anchors sampling: select the most appropriate pixels as anchors among the abundant pseudo-labels predictions.

Contrastive learning

Pixel-prototype-based contrastive loss with InfoNCE

 $\mathcal{L}^{\text{Pix2Proto}} = \frac{1}{N_{\text{a}}} \sum_{a_i \in \mathcal{A}} -\log \frac{\sum_{p_j^+ \in \mathcal{P}^+} \exp\left(a_i \cdot p_j^+ / \tau\right)}{\sum_{p_j^+ \in \mathcal{P}^+} \exp\left(a_i \cdot p_j^+ / \tau\right) + \sum_{p_j^- \in \mathcal{P}^-} \exp\left(a_i \cdot p_j^- / \tau\right)}$

with \mathcal{A} the anchors, $\mathcal{P}^+/\mathcal{P}^-$ the positive/negative keys (prototypes)

□ Entropy-driven sampling

Using information theory we sample relevant pseudo-labels predictions to serve as anchors. The sampling writes:

$$p(x_i) = \frac{\exp -H(x_i)^2}{\sum_{x_j \in \mathcal{X}} \exp -H(x_j)^2}$$

with $H(x_i)$ the Shannon entropy

Prototype memory bank

Our prototypes memory bank avoid greedy pixels storage. We apply **online prototype clustering**, to compute pixel-prototypes mapping framed as an optimal transport problem using Sinhorn algorithm. A **momentum update** ($\sigma = 0.999$) is applied to prototypes.

 j^{th} prototype $\{P_k\}_i$ of class k is updated as:

$$\{P_k\}_j = \sigma\{P_k\}_j + (1 - \sigma) \frac{1}{\sum_{i=1}^{N_k} [m(x_i) = j]} \sum_{i=1}^{n} x_i [m(x_i) = j]$$

 $m(x_i)$: prototype mapping of pixel \mathcal{X}_i $\{P_k\}_i$: *j*-th prototype of class k

D Experiments

We evaluate COARSE3D on 3 datasets and 3 projection-based backbones.

Unless mentioned otherwise, we use SalsaNext [2] backbone.

SemanticKITTI (hidden set)

SemanticPOSS (val set)

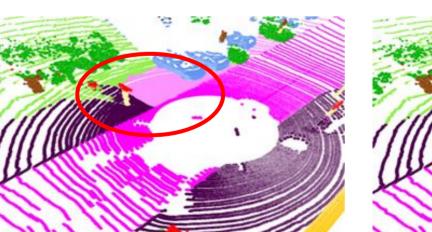
nuScenes (val set)

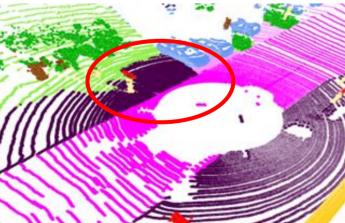
 N_k

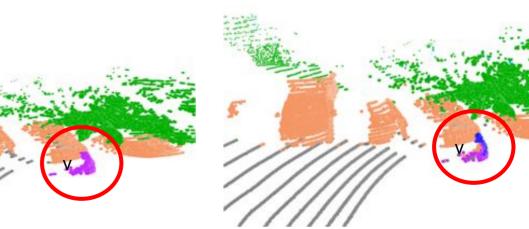
Anno. (%)	Method	Proj	mIoU (%)	Anno. (%)	Method	Proj	mIoU (%)	Anno. (%)	Method	Proj	mIoU (%)
100	(AF) ² S3Net [5]	× 69.7			RandLANet[8]		53.5		PolarNet [6]		72.2
	SquSegV3 [4]	\checkmark	55.9	100	KPConv [9]	×	55.2	100	Cylinder3D [7]	×	76.1
	SalsaNext [2]		59.5		JS3C-Net [10]		60.2		(AF) ² S3Net [5]		78.0
0.1	SQN [1]	×	<u>50.8</u>		SquSegV2[11]	- /	29.8		RangeNet[3]	\checkmark	65.5
	SalsaNext [2]	_ /	50.1 55•7		SalsaNext [2]	\mathbf{v}	45.0		SalsaNext [2]		72.2
	Ours	\checkmark			SalsaNext [2]	- /	38.9 0.1 43.0	SalsaNext [2]	_ /	56.5	
0.01	SQN [1]	×	39.1	0.1	Ours	\mathbf{v}		0.1	Ours	V	58. 7
	SalsaNext [2]	_ /	<u>42.6</u>		SalsaNext [2]	\checkmark	27.4	0.01	SalsaNext [2]	- /	44.5
	Ours	\checkmark	46.2	0.01	Ours		31.1		Ours	V	42.9

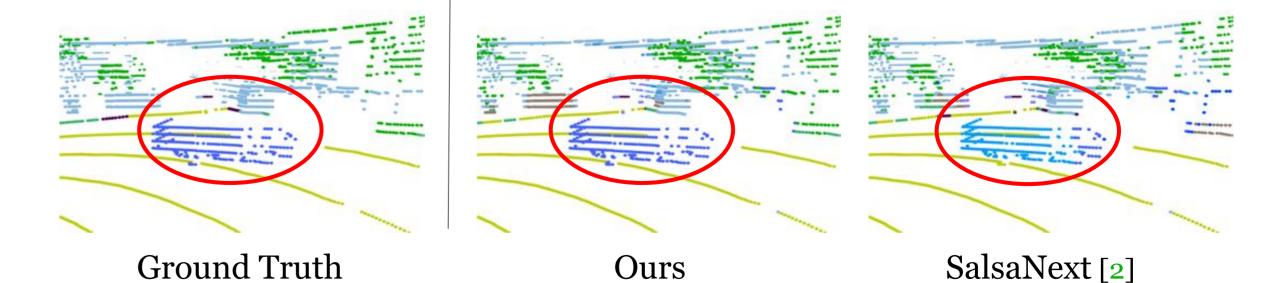
SemanticKITTI (val set)

0.1% annotation









Varying architectures

Methods	SemPOSS mIoU (%)	SemKITTI mIoU (%)	
Rangenet-21 [3]	25.1	40.7	
Ours (Rangenet-21)	28.9 (+3.8)	44.5 (+3.8)	
SqueezeSegV3-21 [4]	30.4	42.5	
Ours (SqueezeSegV3-21)	36.7 (+6.3)	48.5 (+6.0)	
SalsaNext [2]	38.9	52.4	
Ours (SalsaNext)	43.0 (+4.1)	57.6 (+5.2)	

Architecture ablation

Methods	mIoU (%)
Ours	57.57
w/o contrast module	55.44
w/o anchor sampling	<u>56.32</u>
w/o prototype (5k pxl)	56.10
w/o voxel propagation	56.26
w/o Focal loss	42.41
w/o Lovasz loss	56.10

Effect of varying annotation

SemKITTI

SemPOSS

•	mIoU (%)				
Anno.	SalsaNext [2]	Ours			
0.001%	30.39	31.69			
0.01%	44.00	47.13			
0.1%	52.43	56.61			
1%	56.16	58.30			
100%	56.44	58.39			

[1] SQN. Hu et al. ECCV 2022. [2] SalsaNext. Tiago et al. ISVC 2020. [3] Rangenet. Milioto et al. IROS 2019. [4] SqueezeSegV3. Xu et al. ECCV 2020. [5] (AF)2S3Net. Cheng et al. CVPR 2021. [6] PolarNet. Zhang et al. CVPR 2020. [7] Cylinder3D. Zhu et al. CVPR 2021. [8] RandLANet. Hu et al. CVPR 2020. [9] KPConv. Thomas et al. ICCV 2019. [10] JS3C-Net. Yan et al. AAAI 2021. [11] SqueezeSegV2. Wu et al. ICRA 2018.